Analysis 1, Summer 2023 List 3 Derivatives

 ≈ 73 . Use the (ε, δ) definition of a limit to show that the limit of

$$f(x) = 4x - 3$$

as x approaches 2 is equal to 5.

As a reminder, starred \bigstar tasks are ones that I (Adam) believe are beyond the level of an introductory calculus class.

74. Use the limit definition of a derivative (below) to show that the derivative of

$$f(x) = \frac{36}{x+1}$$

at x = 2 is equal to -4. This task is *not* starred.

- 75. Without graphing, determine which one of the three equations below has a solution with $0 \le x \le 3$.
 - (A) $x^2 = 4^x$ (B) $x^3 = 5^x$ (C) $x^5 = 6^x$

For a function f(x) and a number a, the **derivative of** f at a, written f'(a), is the slope of the tangent line to y = f(x) at the point (a, f(a)) and is calculated as

$$f'(a) = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

The function f(x) is **differentiable at** a if f'(a) exists and is finite.

- 76. Calculate f'(5) for the function $f(x) = x^3$.
- 77. Calculate f'(1) for the function $f(x) = \sqrt{x}$. Hint: See Task 50(b).
- 78. The graph of a function is shown below. Near x = 1, x = 3, and x = 7, part of the tangent lines to the graph at those points is shown as a dashed line segment.

- (a) List all points where the function is not continuous.
- (b) List all points where the function is not differentiable (that is, where the derivative does not exist).

79. List all points where $f(x) = \frac{|x| - 4}{|x - 4|}$ is not differentiable.

80. (a) If S(x) = f(x) + g(x), does that mean that S'(3) = f'(3) + g'(3)? That is, is $\lim_{h \to 0} \frac{\left(f(3+h) + g(3+h)\right) - \left(f(3) + g(3)\right)}{h}$ $= \lim_{h \to 0} \frac{f(3+h) - f(3)}{h} + \lim_{h \to 0} \frac{g(3+h) - g(3)}{h}$

always true?

(b) If
$$P(x) = f(x) \cdot g(x)$$
, does that mean that $P'(3) = f'(3) \cdot g'(3)$? That is, is

$$\lim_{h \to 0} \frac{\left(f(3+h) \cdot g(3+h)\right) - \left(f(3) \cdot g(3)\right)}{h}$$

$$= \lim_{h \to 0} \frac{f(3+h) - f(3)}{h} \cdot \lim_{h \to 0} \frac{g(3+h) - g(3)}{h}$$

always true?

The linear approximation to f(x) near x = a is the function

$$L(x) = f(a) + f'(a)(x - a).$$

The line y = L(x) is the **tangent line** to y = f(x) at the point (a, f(a)).

- 81. Graph the curve $y = \sqrt{x}$ and the line tangent to that curve at (1, 1).
- 82. (a) Give the linear approximation to \sqrt{x} near x = 1.
 - (b) Use the approximation from part (a) to estimate $\sqrt{1.2}$.
 - (c) The true value of $\sqrt{1.2}$ is 1.09545..., so is L(1.2) a good approximation?
 - (d) Use the approximation from part (a) to estimate $\sqrt{8}$.
 - (e) The true value of $\sqrt{8}$ is 2.82843..., so is L(8) a good approximation?
- 83. If f is a function with f(-4) = 2 and $f'(-4) = \frac{1}{3}$, give the linear approximation to f(x) near x = -4.
- 84. If g is a function with g(5) = 12 and g'(5) = 2, use a linear approximation to estimate the value of g(4.9).
- 85. Give an equation for the tangent line to $y = 4x^2 x$ at x = 2.
- 86. Give an equation for the tangent line to 7x + 2 through the point (30, 212).

The Constant Multiple Rule: If c is a constant then (cf)' = cf' (cf(x))' = cf'(x) $\frac{d}{dx}[cf] = c\frac{df}{dx}$ D[cf] = cD[f](these are four ways of writing exact the same fact). The Sum Rule: $\frac{d}{dx}[f+g] = \frac{d}{dx}[f] + \frac{d}{dx}[g]$. The Power Rule: If p is a constant then $\frac{d}{dx}[x^p] = px^{p-1}$.

- 87. All parts of this task have exactly the same answer!
 - (a) Find f'(x) for the function $f(x) = 2x^7$.
 - (b) Give f' if $f = 2x^7$.

- (c) Find y' for $y = 2x^7$.
- (d) Compute $\frac{df}{dx}$ for the function $f(x) = 2x^7$.
- (e) Compute $\frac{dy}{dx}$ for $y = 2x^7$.
- (f) Give the derivative of $2x^7$ with respect to x.
- (g) Find the derivative of $2x^7$.
- (h) Calculate $\frac{d}{dx}2x^7$. (i) Calculate $(2x^7)'$. (j) Calculate $D[2x^7]$.
- (k) Differentiate $2x^7$ with respect to x.
- (ℓ) Differentiate $2x^7$.
- 88. Differentiate $x^5 + \frac{2}{9}x^3 + \sqrt{3x} + \frac{x^{10}}{\sqrt{x}}$.
- 89. Differentiate $(x + \sqrt{x})^2$.
- $\stackrel{\text{tr}}{\approx} 90.$ Differentiate $(x + \sqrt{x})^{100}$.
 - 91. For each of the functions below, can the Power Rule and/or Constant Multiple Rule (along with maybe some algebra) be used to find the derivative? If so, give the derivative.
 - (a) $2x^{6}$ (b) $x^{\sin x}$ (c) $\sin(5\cos(x))$ (c) $\ln(2+x)$ (c) $2\sqrt{x}$ (c) $(\sin x)^{x}$ (c) $e^{5\ln(x)}$ (c) $\ln(2x)$
 - (c) $\sqrt{5x}$ (g) e^x (k) $\frac{3}{x^6}$ (o) $\ln(2^x)$
 - (d) x^{π} (h) $\cos(5x)$ (ℓ) x^{x} (p) $\ln(x^{2})$
 - 92. Is it possible to find the derivative of the following functions using the Power Rule, Constant Multiple Rule, and Sum Rule?

(a)
$$x + \ln(5e^x)$$
 (b) $\frac{2x}{x+6}$ (c) $\frac{x+6}{2x}$ (d) $\frac{x+\frac{1}{x}}{\sqrt{x}}$

93. Give an equation for the tangent line to $y = x^3 - x$ at x = 2.

 $\stackrel{<}{\sim} 94$. Find a line that is tangent to both $y = x^2 + 20$ and $y = x^3$.

95. Give the derivative of each of the following functions.

(a) x^{7215} (f) \sqrt{x}^3 (b) $5x^{100} + 9x$ (g) 31(c) $2x^3 - 6x^2 + 10x + 1$ (h) $x + \frac{1}{x}$ (d) $3\sqrt{x}$ (i) $\sqrt{x} + \frac{1}{\sqrt{x}}$ (e) $\sqrt[3]{x}$ (j) $(3x + 7)^2$

- 96. Give an example of a function whose derivative is...
 - (a) x^2 (b) \sqrt{x} (c) $\frac{1}{x^2}$ $\stackrel{*}{\asymp}$ (d) $\frac{1}{x}$
- 97. Give an example of a function whose derivative is $7x^6 + 8x^3 + 9$.
- 98. Is $x^3 x^{1/3}$ continuous everywhere? Is it differentiable everywhere?
- 99. If $f(x) = 8x^4 x^2$, for what values of x does f(x) = 0? For what values of x does f'(x) = 0?
- 100. For the function $f(x) = x^3$ and $g(x) = 2x^2$, ...
 - (a) Calculate the derivative of f.
 - (b) Calculate the derivative of g.
 - (c) Calculate the derivative of

$$f(x) + g(x) = x^3 + 2x^2.$$

(d) Calculate the derivative of

$$f(x) \cdot g(x) = 2x^5.$$

- (e) Does (f + g)' = f' + g'? In other words, is your answer to (c) the same as adding your answers to (a) and (b)?
- (f) Does the derivative of a sum equal the sum of the derivatives?
- (g) Does $(f \cdot g)' = f' \cdot g'$? In other words, is your answer to (d) the same as multiplying your answers to (a) and (b)?

(h) Does
$$\frac{\mathrm{d}}{\mathrm{d}x} \left[f \cdot g \right] = \frac{\mathrm{d}f}{\mathrm{d}x} \cdot \frac{\mathrm{d}g}{\mathrm{d}x}$$

(i) Does the derivative of a product equal the product of the derivatives?